1. Overview
1.概述
In this article, we’ll see how to compute the solutions of a quadratic equation in Java. We’ll start by defining what a quadratic equation is, and then we’ll compute its solutions whether we work in the real or the complex number system.
在这篇文章中,我们将看到如何在Java中计算一元二次方程的解。我们将首先定义什么是一元二次方程,然后无论我们在实数还是复数系统中工作,我们都将计算其解。
2. The Solutions of a Quadratic Equation
2.一元二次方程的解
Given real numbers a ≠ 0, b and c, let’s consider the following quadratic equation: ax² + bx + c = 0.
给定实数a≠0,b和c,让我们考虑下面的二次方程。ax² + bx + c = 0。
2.1. The Roots of a Polynomial
2.1.多项式的根
The solutions of this equation are also called the roots of the polynomial ax² + bx + c. Thus, let’s define a Polynom class. We’ll throw an IllegalArgumentException if the a coefficient is equal to 0:
这个方程的解也被称为多项式ax² + bx + c的根。因此,让我们定义一个Polynom类。如果a系数等于0,我们将抛出一个IllegalArgumentException。
public class Polynom {
private double a;
private double b;
private double c;
public Polynom(double a, double b, double c) {
if (a==0) {
throw new IllegalArgumentException("a can not be equal to 0");
}
this.a = a;
this.b = b;
this.c = c;
}
// getters and setters
}
We’ll solve this equation in the real number system: for this, we’ll look for some Double solutions.
我们将在实数系统中解决这个方程:为此,我们将寻找一些Double解。
2.2. Complex Number System
2.2.复数系统
We’ll also show how to solve this equation in the complex number system. There is no default representation of a complex number in Java, so we’ll create our own. Let’s give it a static method ofReal to easily convert real numbers. This will be helpful in the following steps:
我们还将展示如何在复数系统中解决这个方程。Java中没有复数的默认表示法,所以我们将创建我们自己的复数。让我们给它一个static方法ofReal来轻松转换实数。这在下面的步骤中会有帮助。
public class Complex {
private double realPart;
private double imaginaryPart;
public Complex(double realPart, double imaginaryPart) {
this.realPart = realPart;
this.imaginaryPart = imaginaryPart;
}
public static Complex ofReal(double realPart) {
return new Complex(realPart, 0);
}
// getters and setters
}
3. Calculate the Discriminant
3.计算判别式
The quantity Δ = b² – 4ac is called the discriminant of the quadratic equation. To calculate b squared in java, we have two solutions:
Δ=b²-4ac这个量被称为二次方程的判别式。要在java中计算b的平方,我们有两个解决方案。
- multiply b by itself
- use Math.pow to raise it to the power of 2
Let’s stick with the first method and add a getDiscriminant method to the Polynom class:
让我们坚持使用第一种方法,给Polynom类添加一个getDiscriminant方法。
public double getDiscriminant() {
return b*b - 4*a*c;
}
4. Get the Solutions
4.获取解决方案
Depending on the value of the discriminant, we’re able to know how many solutions exist and compute them.
根据判别式的值,我们能够知道有多少个解决方案存在,并对其进行计算。
4.1. With a Strictly Positive Discriminant
4.1.有了严格意义上的正判别因素
If the discriminant is strictly positive, the equation has two real solutions, (-b – √Δ) / 2a and (-b + √Δ) / 2a:
如果判别式是严格的正数,那么该方程有两个实数解,即(-b – √Δ) / 2a和(-b + √Δ) / 2a:
Double solution1 = (-polynom.getB() - Math.sqrt(polynom.getDiscriminant())) / (2 * polynom.getA());
Double solution2 = (-polynom.getB() + Math.sqrt(polynom.getDiscriminant())) / (2 * polynom.getA());
If we work in the complex number system, we then just need to make the conversion:
如果我们在复数系统中工作,那么我们只需要进行转换。
Complex solution1 = Complex.ofReal((-polynom.getB() - Math.sqrt(polynom.getDiscriminant())) / (2 * polynom.getA()));
Complex solution2 = Complex.ofReal((-polynom.getB() + Math.sqrt(polynom.getDiscriminant())) / (2 * polynom.getA()));
4.2. With a Discriminant Equal to Zero
4.2.判别式等于零的情况下
If the discriminant is equal to zero, the equation has a unique real solution -b / 2a:
如果判别式等于零,该方程有一个唯一的实数解-b / 2a:。
Double solution = (double) -polynom.getB() / (2 * polynom.getA());
Similarly, if we work in a complex number system, we’ll transform the solution in the following way:
同样地,如果我们在复数系统中工作,我们将以如下方式转换解决方案。
Complex solution = Complex.ofReal(-polynom.getB() / (2 * polynom.getA()));
4.3. With a Strictly Negative Discriminant
4.3.使用严格的负判别式
If the discriminant is strictly negative, the equation has no solution in the real number system. However, it can be solved in the complex number system: the solutions are (-b – i√-Δ) / 2a and its conjugate (-b + i√-Δ) / 2a:
如果判别式是严格的负数,该方程在实数系统中没有解。然而,它可以在复数系统中得到解决:解是(-b – i√-Δ) / 2a及其共轭物(-b + i√-Δ) / 2a:
Complex solution1 = new Complex(-polynom.getB() / (2* polynom.getA()), -Math.sqrt(-polynom.getDiscriminant()) / 2* polynom.getA());
Complex solution2 = new Complex(-polynom.getB() / (2* polynom.getA()), Math.sqrt(-polynom.getDiscriminant()) / 2* polynom.getA());
4.4. Gather the Results
4.4.收集结果
To sum up, let’s build a method that will fill in a List with the solutions of the equation when they exist. In the real number system, this method looks like this:
综上所述,让我们建立一个方法,当方程的解存在时,将其填入List。在实数系统中,这个方法看起来像这样。
public static List<Double> getPolynomRoots(Polynom polynom) {
List<Double> roots = new ArrayList<>();
double discriminant = polynom.getDiscriminant();
if (discriminant > 0) {
roots.add((-polynom.getB() - Math.sqrt(discriminant)) / (2 * polynom.getA()));
roots.add((-polynom.getB() + Math.sqrt(discriminant)) / (2 * polynom.getA()));
} else if (discriminant == 0) {
roots.add(-polynom.getB() / (2 * polynom.getA()));
}
return roots;
}
If we work in a complex number system, we’ll rather write:
如果我们在复数系统中工作,我们宁愿写。
public static List<Complex> getPolynomRoots(Polynom polynom) {
List<Complex> roots = new ArrayList<>();
double discriminant = polynom.getDiscriminant();
if (discriminant > 0) {
roots.add(Complex.ofReal((-polynom.getB() - Math.sqrt(discriminant)) / (2 * polynom.getA())));
roots.add(Complex.ofReal((-polynom.getB() + Math.sqrt(discriminant)) / (2 * polynom.getA())));
} else if (discriminant == 0) {
roots.add(Complex.ofReal(-polynom.getB() / (2 * polynom.getA())));
} else {
roots.add(new Complex(-polynom.getB() / (2* polynom.getA()), -Math.sqrt(-discriminant) / 2* polynom.getA()));
roots.add(new Complex(-polynom.getB() / (2* polynom.getA()), Math.sqrt(-discriminant) / 2* polynom.getA()));
}
return roots;
}
5. Conclusion
5.总结
In this tutorial, we’ve seen how to solve a quadratic equation in Java, whether we work with real or complex numbers.
在本教程中,我们已经看到了如何在Java中解决一元二次方程的问题,无论我们是用实数还是用复数工作。
As always, the code can be found over on GitHub.
一如既往,代码可以在GitHub上找到over。